

HyTI: high spectral and spatial resolution thermal infrared imaging from a 6U CubeSat

Presented by

Robert Wright

Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa

On behalf of the HyTl Team

HyTI Mission Goals

To demonstrate high spectral, high spatial, and high SNR long-wave infrared imaging, and high performance on-board computing to process the resulting data, on a 6U CubeSat platform

1. HIGP Fabry-Perot LWIR imaging interferometer ($TRL_{in} = 4$)

2. JPL T2SLS Barrier InfraRed Detector (BIRD) focal plane array (TRL_{in} = 5)

3. Unibap Deep Delphi iX5 heterogeneous onboard computer (TRL_{in}

Relevance of HyTI to NASA's Earth Science mission

Earth scientists have never had access to high spatial and high spectral longwave infrared image data from Earth orbit

HyTI Science Measurement Approach

HyTI Thermal Infrared Interferometric Imaging Spectrometer

What HyTI data will look like

L2 science products will be generated on-board HyTI

HyTI spacecraft subsystems

Payload (TRL=4)

- Multi-element lens (NEOS/FLIR) TRL=6
 - Focus motor (Faulhaber AM1020) TRL=4
- Fabry-Perot interferometer (LightMachinery) TRL=6
- BIRD FPA (JPL) TRL=5
- Integrated dewar cooler assembly (AIRS) TRL=4
 - Dewar assembly (AIRS hi-Nyx) TRL=4
 - SiF board (AIRS) TRL=4
 - Dewar board (AIRS) TRL=4
 - Camerlink interface board TRL=4
 - Cryocooler (AIM SF070) TRL=4
 - Cryocooler drive electronics (Creare) TRL=5
- Current ripple filter (Creare) TRL=5

Electrical and Power (TRL=5)

- Solar panels (×4 ISIS iSPA) TRL=9
- Power distribution and battery pack (ISIS iEPS) TRL=5

Communications (TRL=5)

- X-band downlink (Syrlinks EWC27) TRL=9
- X-band patch antenna (SPAN-X-T3) TRL=9
- S-band transceiver (ISIS) TRL=5
- S-band patch antenna (ISIS) TRL=5
- GlobalStar duplex (NSL EyeStar-D2) TRL=9
- Global Star simplex (NSL EyeStar-S3 (STX3)) TRL=8

Command and Data Handling (TRL=5)

- Payload OBC (Unibap DD-iX5) TRL=5
- Spacecraft OBC (ISIS iOBC) TRL=9

Attitude determination and Control (TRL=9)

- Reaction wheels (CubeSpace CubeADCS) TRL=9
- Torque rods (CubeSpace CubeADCS) TRL=9
- Star Tracker (CubeSpace CubeStar) TRL=9
- Nadir sensor (CubeSpace CubeSense) TRL=9
- Sun sensor (CubeSpace CubeSense) TRL=9
- Magnetometers (CubeSpace CubeADCS) TRL=9
- ADCS OBC (CubeSpace CubeComputer) TRL=9
- GPS (NovAtel OEM719-GSN-LNN-TBE-H) TRL=9

A Day-in-the-Life of HyTI

HyTI Power Budget

HyTI Thermal Control

HyTI payload status

Payload shipping from AIRS to JPL next week for radiometric testing and payload-level vibe

HyTI bus status

Awaiting delivery of FMs for two Creare cooler support boards (next week) and FM of ISISpace EPS (tbc)

ISISpace 6U structure

HyTI bus status

Fit-check/populating frames

HyTI bus status – current flat-sat

Summary

- Space-validating innovative new technology to provide Earth scientists with high spatial and spectral resolution thermal
 infrared image data from a 6U CubeSat
 - Delivery to Nanoracks by 1 October 2021

Acknowledgements:

- 1. Funding from NASA's Earth Science Technology Office's InVEST program (80NSSC18K1601), and Sachi Babu (Program Manager)
- 2. Co-Is and collaborators: Paul Lucey, Miguel Nunes, Luke Flynn (UH Mānoa); Sarath Gunapala, Sir Rafol, David Ting, Alex Soibel (JPL); Lloyd French (Qwest Inc.); Carl Kirkconnell (West Coast Solutions); Dan Manitakos and Bob Papinsick (AIRS), Tom George (SaraniaSat); Peter Kornick, Greg Fitzgerald and team (FLIR OSG); ISISpace; Death Star Developments

